
Journal of Computational Physics 202 (2005) 577–601

www.elsevier.com/locate/jcp
A fourth order accurate discretization for the Laplace
and heat equations on arbitrary domains, with applications

to the Stefan problem q

Frédéric Gibou a,b,*, Ronald Fedkiw b

a Mathematics Department, Stanford University, Stanford, CA 94305, USA
b Computer Science Department, Stanford University, Stanford, CA 94305, USA

Received 6 October 2003; received in revised form 3 May 2004; accepted 27 July 2004

Available online 22 September 2004
Abstract

In this paper, we first describe a fourth order accurate finite difference discretization for both the Laplace equation

and the heat equation with Dirichlet boundary conditions on irregular domains. In the case of the heat equation we use

an implicit discretization in time to avoid the stringent time step restrictions associated with requirements for explicit

schemes. We then turn our focus to the Stefan problem and construct a third order accurate method that also includes

an implicit time discretization. Multidimensional computational results are presented to demonstrate the order accu-

racy of these numerical methods.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Various numerical methods have been developed to solve the Stefan problem. These methods need to be

able to efficiently solve the heat equation on irregular domains and keep track of a moving interface that

may undergo complex topological changes.
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.07.018

q Research supported in part by an ONR YIP and PECASE award (N00014-01-1-0620), a Packard Foundation Fellowship, a Sloan

Research Fellowship, ONR N00014-03-1-0071, ONR N00014-02-1-0720 and NSF DMS-0106694. In addition, the first author was

supported in part by an NSF postdoctoral fellowship (DMS-0102029).
* Corresponding author. Present address: Department of Mechanical and Environmental Engineering, University of California,

Barbara Santa, CA 93106-5070, USA.

E-mail address: fgibou@engineering.ucsb.edu (F. Gibou).

mailto:fgibou@engineering.ucsb.edu

578 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
The interface that separates the two phases can be either explicitly tracked or implicitly captured. The

main disadvantage of an explicit approach, e.g. front tracking (see e.g. [16]), is that special care is needed

for topological changes such as merging or breaking. The explicit treatment of connectivity makes the

method challenging to extend to three spatial dimensions. Implicit representations such as the level set

method [23,29] or the phase-field method [17] represent the front as an isocontour of a continuous function.
Topological changes are consequently handled in a straightforward fashion, and thus these methods are

readily implemented in both two and three spatial dimensions.

Phase-field methods represent the front implicitly and have produced impressive three-dimensional re-

sults (see e.g. [7,17]). However, these methods only have an approximate representation of the front loca-

tion and thus the discretization of the diffusion field is less accurate near the front resembling an enthalpy

method [5]. Moreover, it is often challenging to add new physics to the model since new asymptotic analysis

is often required. For more details on phase field methods for the Stefan problem, see [17] and the refer-

ences therein.
In this paper, we employ the sharp interface implicit representation of the level set method [23,29].

The earliest level set method for solidification type problems was presented in [30] where the authors re-

cast the equations of motion into a boundary integral equation and used the level set method to update

the location of the interface. In [2] the boundary integral equations were avoided by using a finite dif-

ference method to solve the diffusion equation on a Cartesian grid with Dirichlet boundary conditions

imposed on the interface. The jump in the first derivatives of the temperature was used to compute

an interface velocity that was extended to a band about the interface and used to evolve the level set

function in time. Kim et al. [10] showed that such discretization produces results in accordance with solv-
ability theory.

In [34], the authors discretized the heat equation on a Cartesian grid in a manner quite similar to that

proposed in [2] resulting in a non-symmetric matrix when applying implicit time discretization. Udaykumar

et al. [34] used front tracking to update the location of the interface improving upon the front tracking ap-

proach proposed in [16] which used the smeared out immersed boundary method [24] and an explicit time

discretization.

In [15], the authors solved a variable coefficient Poisson equation in the presence of an irregular interface

where Dirichlet boundary conditions were imposed. They used a finite volume method that results in a non-
symmetric discretization matrix. Both multigrid methods and adaptive mesh refinement were used and in

[14] this non-symmetric discretization was coupled to a volume of fluid front tracking method in order to

solve the Stefan problem.

In [26] the authors used adaptive finite element methods for both the heat equation and for the interface

evolution producing stunning three-dimensional results. Other remarkable three-dimensional results can be

found in the finite difference diffusion Monte Carlo method of [25].

Recently, Zhao and Heinrich [35] formulated a second order accurate method for the Stefan problem in

two spatial dimensions using a Galerkin finite element approach to solve for the energy equation. In this
work, the interface was tracked with a set of marker particles making the method potentially hard to extend

in three spatial dimensions. Moreover, the velocity is computed under the assumption that the interface cuts

the element in a straight line.

The interested reader is referred to [2,8,16] and the references therein for an extensive summary of com-

putational results for the Stefan problem.

Standard proofs of convergence use stability and consistency analysis to imply convergence, i.e, given

stability, a sufficient condition for a scheme to be pth order accurate is that the local truncation error is

pth order. However, a pth order local truncation error is not a necessary condition and one can derive
pth order accurate schemes despite the fact that their local truncation error is of lower order. Manteuffel

and White [22] (see also [18]) have made this point in the context of second order, scalar boundary value

problems on non-uniform meshes. In fact, in the process of constructing second order accurate methods for

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 579
such problems, many authors had unnecessarily focused on imposing special restrictions on the mesh size in

order to obtain a second order local truncation error, see e.g [4,11]. In the case of our present work, authors

have also been misled by the limitation of standard convergence analysis proofs and have proposed unnec-

essarily complex schemes. For example, in [2] (see also [10]) the authors approximate the Laplace operator

with the standard second order central scheme, limiting the overall solution to second order accuracy. How-
ever, the discretization of the Laplace operator for grid nodes neighboring the interface amounts to differ-

entiating a quadratic interpolant of the temperature twice in each spatial dimension. Gibou et al. [9]

reformulated the interface treatment with the use of ghost cells (based on the ghost fluid method [6]) defined

by extrapolation of the temperature across the interface and showed that local linear extrapolation is en-

ough to obtain second order spatial accuracy for both the Laplace equation and the heat equation on irreg-

ular domains. Moreover, such a discretization has the benefit of yielding a symmetric linear system as

opposed to a non-symmetric system in [2]. This scheme served as the basis of a simple method to solve

the Stefan problem. It was further used in [8] to show that one could obtain solutions in agreement with
solvability theory, and could simulate many of the physical features of crystal growth such as molecular

kinetics and surface tension.

In this paper, we exploit the methodology of [9] to derive a fourth order accurate finite difference dis-

cretization for the Laplace equation on irregular domains. Then, we apply this framework to derive a

fourth order accurate discretization for the heat equations with Dirichlet boundary conditions on arbi-

trary domains. In this case we use an implicit time discretization to avoid the stringent time step restric-

tions induced by explicit schemes. We then turn our focus to the Stefan problem with Dirichlet boundary

conditions and construct a third order accurate discretization that includes implicit integration in time.
Multidimensional computational results are presented to verify the order accuracy of these numerical

methods.
2. Laplace equation

Consider a Cartesian computational domain, X 2 Rn, with exterior boundary, oX, and a lower dimen-

sional interface, C, that divides the computational domain into disjoint pieces, X� and X+. The Laplace
equation is given by
DT ð~xÞ ¼ f ð~xÞ; ~x 2 X�; ð1Þ
where ~x ¼ ðx; y; zÞ is the vector of spatial coordinates, D ¼ o2

ox2 þ o2

oy2 þ o2

oz2 is the Laplace operator, and T is

assumed to be smooth on X�. On C, Dirichlet boundary conditions are specified.

To separate the different domains, we introduce a level set function / defined as
/ < 0 for ~x 2 X�;

/ > 0 for ~x 2 Xþ;

/ ¼ 0 for ~x 2 C:

8><
>:
A convenient choice that ensures numerical robustness is to define / as the signed distance function to the

interface. The level set is also used to identify the location of the interface to high order accuracy as will be

discussed throughout this paper.

The discretization of the Laplace operator, including the special treatments needed at the interface, is

performed in a dimension by dimension fashion. Therefore, without loss of generality, we first describe

the discretization in one spatial dimension.

580 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
2.1. 1D Laplace

Consider the Laplace equation in one spatial dimension, i.e. Txx = f. The computational domain is dis-

cretized into cells of size Dx with the grid nodes xi located at their centers. The solution to the Laplace equa-

tion is computed at the grid nodes and is written as Ti = T(xi). We consider the standard fourth order
discretization:
Fig. 1.
~T ð0Þ ¼
T xxð Þi �
� 1

12
T i�2 þ 4

3
T i�1 � 5

2
T i þ 4

3
T iþ1 � 1

12
T iþ2

Dx2
: ð2Þ
For each unknown, Ti, Eq. (2) is used to fill in one row of a matrix creating a linear system of equations.

This discretization is valid if all the node values used belong to the same domain, but needs to be modified

otherwise. For example, suppose the interface location, xI, is located in between the nodes xi and xi+1 (see

Fig. 1) and suppose that we seek to write the equation satisfied by Ti. Since the solution is not defined across
the interface, we need valid values for Ti+1 and Ti+2 that �emulate� the behavior of the solution defined to the

left of the interface. We achieve this by defining �ghost values� TG
iþ1 and TG

iþ2 constructed by extrapolating

the values of T across the interface. The discretization for such points in the neighborhood of the interface

is then rewritten as
T xxð Þi �
� 1

12
T i�2 þ 4

3
T i�1 � 5

2
T i þ 4

3
TG

iþ1 � 1
12
TG

iþ2

Dx2
: ð3Þ
More precisely, we first construct an interpolant ~T ðxÞ of T(x) on the left of the interface, such that
~T ð0Þ ¼ T i, and then we define TG

iþ1 ¼ ~T ðDxÞ and TG
iþ2 ¼ ~T ð2DxÞ. Fig. 1 illustrates the definition of the ghost

cells in the case of the linear extrapolation.

In this paper, we consider constant, linear, quadratic and cubic extrapolations defined by:

Constant extrapolation: Take ~T ðxÞ ¼ d with:

� d = TI.

Linear extrapolation: Take ~T ðxÞ ¼ cxþ d with:

� ~T ð0Þ ¼ T i,

� ~T ðhDxÞ ¼ T I.
i+1

Ti

TI

θ∆x

TG

−Ω Ω+

Interface Position

xi xI xi+1

SUBDOMAIN SUBDOMAIN

Solution Profile

Definition of the ghost cells with linear extrapolation. First, we construct a linear interpolant ~T ðxÞ ¼ axþ b of T such that

T i and ~T ðhDxÞ ¼ T I. Then, we define TG
iþ1 ¼ ~T ðDxÞ (likewise, TG

iþ2 ¼ ~T ð2DxÞ).

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 581
Quadratic extrapolation: Take ~T ðxÞ ¼ bx2 þ cxþ d with:

� ~T ð�DxÞ ¼ T i�1,

� ~T ð0Þ ¼ T i,
� ~T ðhDxÞ ¼ T I.

Cubic extrapolation: Take ~T ðxÞ ¼ ax3 þ bx2cxþ d with:

� ~T ð�2DxÞ ¼ T i � 2,

� ~T ð�DxÞ ¼ T i � 1,

� ~T ð0Þ ¼ T i,

� ~T ðhDxÞ ¼ T I.

In these equations h = (xI � xi)/Dx refers to the cell fraction occupied by the subdomain X�.
Similarly, if we were solving for the domain X+, the equation satisfied by Ti+1 requires the definition of

the ghost cells TG
i and TG

i�1. In this case, we write TG
i ¼ ~T ðDxÞ and TG

i�1 ¼ ~T ð2DxÞ with the definition for ~T
modified as follows: h is replaced by 1 � h, Ti is replaced by Ti+1, Ti�1 is replaced by Ti+2 and Ti�2 is re-

placed by Ti+3.

We note that the construction of ~T cannot be arbitrary. It is obviously limited by the number of

points within the domain, but also by how close the interface is from a grid node. The latter restriction

comes from the fact that, as h ! 0, the behavior of the interpolant deteriorates. We found that a good

rule of thumb is to shift the interpolation to be centered one grid point to the left when h < Dx, e.g. in
the case of a linear extrapolation, we use the conditions ~T ð0Þ ¼ T i�1 and ~T ðð1þ hÞDxÞ ¼ T I instead of
~T ð0Þ ¼ T i and ~T ðhDxÞ ¼ T I . Then, the ghost nodes are defined as TG

iþ1 ¼ ~T ð2DxÞ and TG
iþ1 ¼ ~T ð3DxÞ.

Finally, we lower the degree of the interpolant in order to preserve the higher order extrapolation follows

similarly. The resulting linear system is pentadiagonal (in the case where the stencil has to be shifted, we

lower the degree of the interpolant in order to preserve that structure).

In the case of the constant and the linear extrapolations, the matrix entries to the right of the diagonal

for the ith row and to the left of the diagonal for the (i + 1)th row are equal to zero, yielding a symmetric

linear system. This allows for the use of fast iterative solvers such as preconditioned conjugate gradient (see,
e.g., [27]). Moreover the corresponding matrix is strictly diagonally dominant and therefore non-singular.

In the case of extrapolations of higher degrees, the linear system is non-symmetric and not necessarily

strictly diagonally dominant, but we can still develop high order accurate methods. We note that [20] de-

signed a method that also yields a non-symmetric linear system but which is only second order accurate.

The overall accuracy of the method is also determined by the order of the extrapolation. We illustrate in

Sections 2.1 and 2.2 that such discretizations yield first, second, third and fourth order accuracy in the case

of the constant, linear, quadratic and cubic extrapolations, respectively.

The overall accuracy for T and the nature of the resulting linear system is determined by the degree of
the interpolation function ~T , which is summarized in Table 1.

We test our methodology on the following example. Let X = [0,1] with an exact solution of

T = x5 � x3 + 12x2 � 2.5x + 2 on X�. We define / = x � .5, hence the interface never falls on a grid node.

Dirichlet boundary conditions are enforced on the oX using the exact solution. The following tables give the

error between the numerical solution and the exact solution in the L1- and L1-norms. These same results
Table 1

Order of accuracy and nature of the linear system corresponding to the constant, linear, quadratic and cubic case

Degree of extrapolation Order of accuracy Linear system

Constant First Symmetric

Linear Second Symmetric

Quadratic Third Non-symmetric

Cubic Fourth Non-symmetric

582 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
are also presented on a log–log plot in Fig. 2, where the open symbols represent the error in the L1-norm

and the solid lines represent the least square fit. These results illustrate the first, second, third and fourth

order accuracy in the case of constant, linear, quadratic and cubic extrapolations, respectively. In the case

where the linear system is symmetric, we use a preconditioned conjugate gradient method with an incom-

plete Cholesky preconditioner. In the case where the linear system is non-symmetric, we use the BiCGSTAB
method (see e.g. [27]).

Constant extrapolation
Number of points
10
1

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 2. Error analysis in the L1-norm

number of grid nodes on a log–log sca

case where the ghost cells are defined
L1-error
10
2

for the one-dimensional Lapla

le and the solid lines are the lea

by constant, linear, quadratic a
Order
ce equation. The open

st square fits with slope

nd cubic extrapolations
L1-error
10
3

symbols represent the errors ve

s �1.03, �2.07, �2.91 and �4.1

, respectively.
Order
16
 1.307 · 10�1
 –
 2.369 · 10�1
 –
32
 6.248 · 10�2
 1.06
 1.196 · 10�1
 0.98
64
 3.057 · 10�2
 1.03
 6.018 · 10�2
 0.99
128
 1.512 · 10�2
 1.02
 3.020 · 10�2
 1.00
Linear extrapolation
Number of points
 L1-error
 Order
 L1-error
 Order
16
 4.456 · 10�3
 –
 8.463 · 10�3
 –
32
 1.013 · 10�3
 2.13
 2.045 · 10�3
 2.05
64
 2.417 · 10�4
 2.06
 5.031 · 10�4
 2.02
128
 5.901 · 10�5
 2.03
 1.247 · 10�4
 2.01
rsus the

0 in the

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 583
Quadratic extrapolation
Number of points
 L1-error
 Order
 L1-error
 Order
16
 2.168 · 10�5
 –
 5.197 · 10�5
 –
32
 3.084 · 10�6
 2.81
 7.532 · 10�6
 2.78

64
 4.013 · 10�7
 2.94
 9.971 · 10�7
 2.91
128
 5.095 · 10�8
 2.98
 1.278 · 10�7
 2.96
Cubic extrapolation
Number of points
 L1-error
 Order
 L1 � error
 Order
16
 1.502 · 10�6
 –
 8.519 · 10�6
 –

32
 8.416 · 10�8
 4.15
 5.401 · 10�7
 3.97
64
 4.867 · 10�9
 4.11
 3.378 · 10�8
 3.99
128
 2.936 · 10�10
 4.05
 2.109 · 10�9
 4.00
2.2. 2D Laplace

The methodology discussed in Section 2.1 extends naturally to two and three spatial dimensions. For

example, in the case of two spatial dimensions, we solve
T xx þ T yy ¼ f :
The spatial derivatives Txx and Tyy are approximated as
T xxð Þi;j �
� 1

12
T i�2;j þ 4

3
T i�1;j � 5

2
T i;j þ 4

3
T iþ1;j � 1

12
T iþ2;j

Dx2
;

T yy

� �
i;j
�

� 1
12
T i;j�2 þ 4

3
T i;j�1 � 5

2
T i;j þ 4

3
T i;jþ1 � 1

12
T i;jþ2

Dy2
;

and for cells cut by the interface, ghost values are defined by extrapolating the value of T across the inter-

face as described in Section 2.1. Note that in two spatial dimensions, the definition of the ghost cells in-

volves hx and hy, i.e. the cell fractions in the x and y direction, respectively. These quantities are

evaluated as follows. Consider a grid node (xi,yj) in the neighborhood of the interface. We first construct

a cubic interpolant ~/
x
of / in the x-direction and find the interface location xI by solving ~/

xðxIÞ ¼ 0. Then,

we define hx = |xi � xI|/Dx. The procedure to find hy is similar.

We emphasize that the numerical discretization of Txx is independent from that of Tyy, making the pro-

cedure trivial to extend to two and three spatial dimensions.
We illustrate the order of accuracy on the following example. Let X = [�1,1] · [�1,1] with an exact solu-

tion of T = sin(px) + sin(py) + cos(px) + cos(py) + x6 + y6 in X�. The interface is parameterized by

(x(a),y(a)), where
xðaÞ ¼ :02
ffiffiffi
5

p
þ ð:5þ :2 sinð5aÞÞ cosðaÞ;

yðaÞ ¼ :02
ffiffiffi
5

p
þ ð:5þ :2 sinð5aÞÞ sinðaÞ;

8<
:

with a 2 [0,2p].

10.80.60.40.200.20.40.60.81

1

0

1

1.5

1

0.5

0

0.5

1

1.5

2

2.5

3

Fig. 3. Solution of the Laplace equation on an irregular domain in two spatial dimensions. The exact solution is

T = sin(px) + sin(py) + cos(px) + cos(py) + x6 + y6 in X�. The grid size is 64 · 64 and the ghost cells are defined by cubic extrapolation.

584 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
Fig. 3 depicts the solution on a 64 · 64 grid and Fig. 4 illustrates the accuracy in the L1-norm. Note that
on irregular domains, the number of available grid nodes within the domain might limit the extrapolation

to a lower degree for some grid resolutions. This partially explains the �oscillatory� nature of the accuracy

results in the graph of Fig. 3. However, the slopes of the least square fits are still in accordance with first,

second, third and fourth order accuracy for the constant, linear, quadratic and cubic extrapolation defini-

tions of the ghost nodes.
3. Heat equation

Consider a Cartesian computational domain, X 2 Rn, with exterior boundary, oX, and a lower dimen-

sional interface, C, that divides the computational domain into disjoint pieces, X� and X+. The heat equa-

tion is written as
T tð~xÞ ¼ DT ð~xÞ; ~x 2 X�; ð4Þ

where T ð~xÞ is assumed to be smooth on X�. On C, Dirichlet boundary conditions are specified.

Explicit time discretization schemes are impractical in the case of arbitrary domains because they suffer

from stringent time step restrictions. For example in one spatial dimension, we must impose a time step

restriction of O(h2Dx2) with 0 < h = (xI � xi)/Dx 6 1 for cells cut by the interface. Since h can be arbitrarily

small, explicit schemes are prohibitively computationally expensive. Although one could remesh the do-

main to keep h reasonable, in the case of a moving interface this would require remeshing every time

the value of h gets below an acceptable threshold. On the other hand, an implicit time discretization can

obtain an unconditionally stable if its region of absolute stability spans the entire left half plane (see [19]

for more details). Thus, we choose the Crank–Nicholson scheme and impose a time step restriction of
Dt = cDx2, 0 < c < 1 in order to obtain a fourth order accurate discretization in time. However, we note that

backward differentiation formulae or implicit Runge–Kutta schemes could be use instead in order to relax

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 4. Error analysis in the L1-norm for the two-dimensional Laplace equation. The open symbols represent the errors versus the

number of grid nodes on a log–log scale and the solid lines are the least square fits with slopes �.85, �1.94, �2.94 and �3.96 in the case

where the ghost cells are defined by constant, linear, quadratic and cubic extrapolations, respectively. Note that on a 32 · 32 mesh, the

error for the quadratic extrapolation is the same as that for the cubic extrapolation. This is an example where there was not enough

points within the domain to construct a cubic interpolant and the algorithm is temporarily forced to use a quadratic interpolant.

Moreover, since we use the L1-norm, the results are strict. Although not presented here, the L1-error is much less affected by artifacts

since it is an average quantity.

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 585
the time step restriction to Dt = cDx, 0 < c < 1. The reader is referred to [19] for additional details about

numerical methods for ordinary differential equations.

The Crank–Nicholson scheme can be written as
I � Dt
2
Anþ1ðDÞ

� �
T nþ1 ¼ I þ Dt

2
AnðDÞ

� �
T n;
where An(D) and An+1(D) represent the spatial approximation of the Laplace operator at time tn and tn+1,

respectively. The spatial discretization is performed in a dimension by dimension fashion and resembles

that of Section 2. More precisely, we first evaluate the right-hand side f n ¼ ðI þ Dt
2
AnðDÞÞT n at time tn using

the methodology of Section 2 to define the ghost cells dimension by dimension. We emphasize that we only

need to define the ghost cells in the Cartesian directions. Then, we solve
I � Dt
2
Anþ1ðDÞ

� �
T nþ1 ¼ f n:
The Laplace operator at time tn+1 is discretized along the lines of Section 2 as well. Each equation is used to

fill one row of a linear system that is then solved with an iterative solver.

586 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
Since the discretization is performed in a dimension by dimension fashion, we first present the one-

dimensional case.
3.1. 1D Heat

In the one spatial dimension case, we discretize the heat equation as
T nþ1 � Dt
2
Anþ1ðT xxÞ ¼ T n þ Dt

2
AnðT xxÞ;
where An(Txx) and An(Txx) are the fourth order approximations of Txx at time tn and tn+1, respectively. The

discretization of the heat equation is performed in two steps and depends heavily on that of the Laplace
operator described in Section 2.1. First, we approximate T n

xx with the fourth order accurate discretization

of
ðT n
xxÞi �

� 1
12
T n

i�2 þ 4
3
T n

i�1 � 5
2
T n

i þ 4
3
T n

iþ1 � 1
12
T n

iþ2

Dx2
:

The special treatment needed for grid nodes neighboring the interface is performed as described in Section

2.1, using the values at the interface at time tn. We then evaluate f n ¼ T n þ Dt
2
AnðT xxÞ and we are left to solve
T nþ1 � Dt
2
Anþ1ðT xxÞ ¼ f n: ð5Þ
We consider again the standard fourth order discretization to approximate Txx at time tn+1:
T nþ1
xx

� �
i
�

� 1
12
T nþ1

i�2 þ 4
3
T nþ1

i�1 � 5
2
T nþ1

i þ 4
3
T nþ1

iþ1 � 1
12
T nþ1

iþ2

Dx2
: ð6Þ
For each unknown, T nþ1
i , Eqs. (5) and (6) are used to fill in one row of a matrix creating a linear system of

equations. The treatment of the grid nodes in the neighborhood of the interface is also based on defining

ghost node values and uses the values of the temperature at the interface at time tn+1.

For the remainder of this paper, we focus on designing a fourth order accurate method for the heat equa-

tion and a third order accurate method for the Stefan problem. Therefore, we present only the results for

these accuracy tests, although we have checked that one obtains first, second, third and fourth order accu-

racy for the constant, linear, quadratic and cubic extrapolations, respectively. The nature of the linear sys-

tem and the order of accuracy is the same as that of the Laplace operator (see Table 1).

Consider the following example. Let X = [�1,1] with an exact solution of T ¼ e�p2t cosðpxÞ on X�. We
take / = x � .313 (thus 0 < h < 1). Dirichlet boundary conditions are enforced on the oX using the exact

solution and the final time is t = 1/p2. The ghost values are defined with a cubic extrapolation of T across

the interface. Fig. 5 illustrates the fourth order accuracy in the L1-norm.

3.2. 2D heat

The algorithm described above extends readily to two and three spatial dimensions. The approximations

of Txx and Tyy are performed independently of each other making the procedure trivial to implement.
Consider the following example. Let X = [�1,1] · [�1,1] with an exact solution of T ¼ e�2t sinðxÞ sinðyÞ

in X�. The interface is parameterized by (x(a),y(a)), where
xðaÞ ¼ :02
ffiffiffi
5

p
þ ð:5þ :2 sinð5aÞÞ cosðaÞ;

yðaÞ ¼ :02
ffiffiffi
5

p
þ ð:5þ :2 sinð5aÞÞ sinðaÞ;

(

with a 2 [0,2p].

10
1

10
2

10
3

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

Fig. 5. Error analysis in the L1-norm for the one-dimensional heat equation. The open symbols represent the error versus the number

of grid nodes on a log–log scale and the solid line depicts the least square fit with slope �4.14 in the case where the ghost cells are

defined by cubic extrapolation.

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 587
Fig. 6 depicts the solution on a 64 · 64 grid and Fig. 7 demonstrates the fourth order accuracy in the L1-

norm.
4. Stefan problem

Consider again a Cartesian computational domain, X 2 Rn, with exterior boundary, oX, and a lower

dimensional interface, C, that divides the computational domain into disjoint pieces, X� and X+. The Stefan

problem is written as
T tð~xÞ ¼ DDT ð~xÞ; ~x 2 X;

T ð~xÞ ¼ 0; ~x 2 C;

V n ¼ �D½rT �jC �~n;

8><
>:
where D is the diffusion coefficient, assumed in this work to be constant on each subdomain, but may be

discontinuous across the interface. T ð~xÞ is assumed to be smooth on each disjoint subdomain, X� and X+,

but may have a kink at the interface C. On oX, Dirichlet boundary conditions are specified.
We need to both discretize the heat equation and evaluate the velocity at the interface. The added com-

plexity for the Stefan problem stems from the fact that the interface is evolving in time. We keep track of

the interface evolving under the velocity field ~V ¼ ðu; v;wÞ by solving the advection equation:

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

0

1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 6. Solution of the heat equation on an irregular domain in two spatial dimensions. The exact solution is T = e�2t sin(x) sin(y) in

X�. The grid size is 64 · 64 and the ghost cells are defined by cubic extrapolation.

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

Fig. 7. Error analysis in the L1-norm for the two-dimensional heat equation. The open symbols represent the error versus the number

of grid nodes on a log–log scale and the solid line depicts the least square fit with slope �3.94 in the case where the ghost cells are

defined by cubic extrapolation.

588 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 589
/t þ ~V � r/ ¼ 0:
The velocity components are defined by the x, y and z projections of the jump in the temperature gradient,

i.e. (u,v,w) = ([Tx]|C,[Ty]|C,[Tz]|C). The level set advection equation is discretized with a HJ-WENO scheme

[12], see also [13,21]. For more details on the level set method, see e.g. [23,29].
4.1. Discretization of the Stefan problem

Consider the Crank–Nicholson framework:
T nþ1 � Dt
2
Anþ1ðT xxÞ ¼ T n þ Dt

2
AnðT xxÞ; ð7Þ
and let the temperature be defined at time tn. The algorithm to solve the Stefan problem is:

1. Extrapolate Tn in the normal direction.

2. Discretize f n ¼ T n þ Dt
2
AnðDÞT n in Eq. (7).

3. Evolve the level set function for one time step Dt.
4. Assemble and solve the linear system for Tn+1.

5. Repeat 1–4 until done.

4.1.1. Why extrapolate in the normal direction?

We follow along the lines of Section 3 to discretize the heat equation with the Crank–Nicholson scheme

by writing the discretization of the Laplace operator at time tn and evaluating the right-hand side

f n ¼ T n þ Dt
2
AnðDÞT n. However, the added difficulty is due to the moving domain. Fig. 8 depicts a two-

dimensional example. As the interface moves from its position at time tn to its new location at time tn+1,

new grid nodes are added to X� (depicted for example by the dark node). Since we need to evaluate the
right-hand side at these new nodes, valid values for Tn must exist there. Moreover, since the interface is

evolved in the normal direction, valid values of Tn must exist not only in the Cartesian directions, as it

was the case for the heat equation, but in every direction. Therefore, a high order extrapolant must be de-

fined in the normal direction at the interface and such a procedure must be easy to implement in one, two

and three spatial dimensions.

4.1.2. High order extrapolation

High order extrapolation in the normal direction is performed in a series of steps, as proposed in [1]. For
example, suppose that we seek to extrapolate T from the region where / 6 0 to the region where / > 0. In

the case of a cubic extrapolation, we first compute T nnn ¼ ~rð ~rð ~rT �~nÞ �~nÞ �~n in the region / 6 0 and

extrapolate it across the interface in a constant fashion by solving the following partial differential equation:
oT nnn

os
þ Hð/þ bandÞ ~rT nnn �~n ¼ 0;
whereH is the Heaviside function and band accounts for the fact that Tnnn is not defined in the region where

/ P band. Typically, we take band ¼ 2
ffi
dx2 þ dy2

p
in the case where Tnnn is computed by central

differencing.

Then, the value of T across the interface is found by solving the following three partial differential equa-

tions: First solve
oT nn

os
þ Hð/Þ ~rT nn � T nnn

� �
¼ 0;

−Ω

Ω+

?

Interface at time n+1Interface at time n

Fig. 8. Interface at time tn (dashed line) and tn+1 (solid line). The dark point with a question mark represents a grid node that is swept

over by the interface between two consecutive time steps and where valid value of Tn needs to be extrapolated in a non-Cartesian

normal direction in order to evaluate f n ¼ T n þ Dt
2
AnðDÞT n in Eq. (7).

590 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
defining Tnn in such a way that its normal derivative is equal to Tnnn. Then, solve
oT n

os
þ Hð/Þ ~rT n � T nn

� �
¼ 0;
defining Tn in such a way that its normal derivative is equal to Tnn. Finally, solve
oT
os

þ Hð/Þ ~rT � T n

� �
¼ 0;
defining T in such a way that its normal derivative is equal to Tn. These PDEs are solved in fictitious time s
for a few iterations (typically 15) since we only seek to extrapolate the values of T in a narrow band of a few

grid cells around the interface.
Fig. 9 illustrates the cubic extrapolation. This example is taken from [1]. Consider a computational do-

main X = (�p,p) · (�p,p) separated into two regions: X� defined as the interior of a disk with center at the

origin and radius two, and its complementary X+. The function T to be extrapolated from X� to X+ is de-

fined as T = cos(x)sin(y) for~x 2 X�. Fig. 9 (top) illustrates the contours of T after it has been extrapolated

across the interface and Fig. 9 (bottom) depicts the contour plots for the exact solution for comparison. For

the sake of clarity we have extrapolated T in the entire region in this example but we iterate that in practice

the extrapolation is performed only in a neighborhood of the interface. The extrapolation is fourth order

accurate in the L1-norm as demonstrated in Fig. 10.
At the end of the high order extrapolation procedure we have Tn at all grid nodes near the interface, so

that if the interface moves across new grid nodes, we can still evaluate T n þ Dt
2
AnðDÞT n and proceed as in

Section 3 to assemble the linear system.

4.2. Discretization of the velocity

The method described above can be used to obtain a fourth order accurate temperature, at best. As a

consequence, the velocity involving gradients of the temperature will only be third order accurate. Not sur-

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

102030405060708090100102030405060708090100Fig. 9. Top: Plots of several isocontours of
extrapolation). Bottom: Exact solution for the
prisingly, the order of accuracy in the computation of the velocity is a determining factor towards the over-

all accuracy of the method.
For example let X = [0,1] with an exact solution of T = et � x+.5 � 1 on X� and take / = x � .5 at t = 0.

Dirichlet boundary conditions are enforced on oX using the exact solution. We compute the solution at

time tfinal = .25. We use the the Crank–Nicholson scheme with Dt � Dx2 to allow for a fourth order accurate

scheme in time and we use the cubic extrapolation to define the ghost values. In these tests, we use the exact

interface velocity perturbed by an O(Dx3), O(Dx2) and O(Dx) amount. Fig. 11 illustrates the fact that a

third, second and first order accurate velocity will produce an overall third, second and first order accuracy,

respectively.

The examples above demonstrate that a O(Dx) perturbation in the velocity forces the solution to be first
order accurate in the case of the Stefan problem, regardless of the order of accuracy of the discretization of

the heat equation operator. In [9], the velocity could be at most first order accurate, since it was computed
the solution extrapolated in the normal direction from inside the disk to the outside (cubic
sake of comparison.F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601591

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Fig. 10. Error analysis in the L1-norm for the two-dimensional definition of the ghost cells defined by cubic extrapolation in the

normal direction as proposed in [1]. The open symbols are the errors in the maximum norm and the solid line is a least square fit with

slope �4.38.

592 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
as a derivative of a second order accurate solution. As a consequence, the authors had the leeway to com-
pute the jumps in Tx (resp. Ty, Tz) at the point where the interface crosses the x (resp. y, z) axis. That short

cut in the velocity computation produces a simple discretization but is not possible in the design of a high

order discretization. Moreover, since the level set moves in the normal direction, the velocity must also be

constant in the normal direction. Consequently, the velocity at a grid nodes near the interface must be that

of the closest point to the interface. In addition, in order to construct an overall third order accurate

scheme, we must be able to construct a third order accurate velocity.

Suppose that we construct a cubic interpolation ~T of the temperature around the interface and that the

interface position xI is known to third order accuracy, then the velocity is simply defined as
ð½~T x�; ½~T y �; ½~T z�ÞC. Note that the construction of ~T is straightforward once the temperature values have been

extrapolated across the interface as described in Section 4.1.2, since we then have valid values for the tem-

perature of each domain in both / > 0 and / 6 0.

4.2.1. Finding the closest point

There are many ways of finding the closest point to an implicitly defined interface. Here, we follow the

work of Chopp [3] since it is based on bi-cubic interpolation and fits well into our framework. Given the

level set function, one can identify the cells crossed by the interface by simply checking the sign change of /.
For each such cell C with vertices (xi,yj), (xi+1,yj), (xi,yj+1) and (xi+1,yj+1), we construct a cubic interpolation
~/ of / using the grid nodes of the 3 · 3 cells centered at C. For each grid node~P ¼ ðxi; yjÞ near the interface,

10
1

10
2

10
3

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 11. Error analysis on the effect of perturbing the velocity by a O(Dx) (circles), O(Dx2) (squares), and O(Dx3) (triangles) amount in

the case of the one-dimensional Stefan problem. The symbols represent the numerical solution on a log–log scale and the solid lines are

the least square fits with slopes �.99, �2.03 and �3.05.

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 593
we seek to find the closest point on the set S ¼ f~x 2 Xj~/ð~xÞ ¼ 0g. Chopp notes that such a point~xI must

satisfy the following two equations:
~/ð~xIÞ ¼ 0; ð8Þ

~r~/� ð~P �~xIÞ ¼ 0; ð9Þ

accounting for the fact that~xI must be on S and that the normal at this point must be aligned with~xI �~P .
Then, he proposes an iterative scheme starting with~x0I ¼ ~P and solving simultaneously (8) and (9) with a
Newton-type algorithm:
~d1 ¼ �~/ð~xkI Þ
~r~/ð~xkIÞ

~r~/ð~xkI Þ � ~r~/ð~xkI Þ
;

~xkþ1=2
I ¼~xkI þ~d1;

~d2 ¼ ð~P �~xkIÞ �
ð~P �~xkI Þ � ~r~/ð~xkIÞ
~r~/ð~xkIÞ � ~r~/ð~xkI Þ

~r~/ð~xkIÞ;

~xkþ1
I ¼~xkþ1=2

I þ~d2: ffiq

Convergence is assumed when kd1k2 þ kd2k2 < 10�3DxDy. Typically five iterations are sufficient to find

the closest point to third order accuracy in the case where the interface is smooth. However, since this

594 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
algorithm is not guaranteed to converge, the maximum number of iterations is set to 20. Although conver-

gence is not guaranteed, we did not encounter any problems in our computations. The reader is referred to

[3] for more details.

4.2.2. A note on the re-initialization equation

For the sake of robustness in the numerics, it is important to keep the values of / close to those of a

signed distance function, i.e. |$/| = 1. The fast marching method [33,28] is a O(n log(n)) algorithm, where

n is the number of grid nodes, but is only first order accurate. In our work, since an O(Dx) perturbation of

the interface leads to a first order accurate temperature, we cannot use such a method. Another way of re-

initializing / is to solve the re-initialization equation introduced in [32]
Fig. 12

order

eq � 2.3

slopes
/s þ Sð/0Þðjr/j � 1Þ ¼ 0 ð10Þ

for a few steps in fictitious time, s. This equation is traditionally discretized with the HJ-WENO scheme of

[12] in space because it yields less noisy results when computing quantities such as the curvature. However,

we note that the order of convergence is only second order accurate as depicted in Fig. 12. This is due to the

fact that the re-initialization equation is a Hamilton–Jacobi type equation with discontinuous characteris-

tics near the interface.
10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

. Error analysis in the L1 (circles) and L1 (triangles) norms for the two-dimensional reinitialization Eq. (10). We use a fifth

WENO discretization in space and a third order TVD Runge–Kutta discretization in time. We take initially the function
13 � 1, where q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The symbols represent the errors on a log–log scale and the solid lines are the least square fits with

�2.04, �1.88, respectively.

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 595
Since a O(Dx2) perturbation of the interface can lead to a second order accurate solution for T at best,

we do not use Eq. (10) to re-initialize /. Instead, the procedure detailed in Section 4.2.1 gives the distance to

the interface to third order accuracy for grid nodes in the neighborhood of the interface.
4.3. A simple example in one spatial dimension

Let X = [0,1] and / = x � .5 at t = 0. We consider an exact solution of T = et � x + .5 � 1 on X�. Dirichlet

boundary conditions are enforced on the oX using the exact solution and we compute the solution at time

tfinal = .25. We use the Crank–Nicholson scheme with Dt � Dx2 and the cubic extrapolation to define the

ghost cells. Fig. 13 demonstrates the fourth order accuracy obtained when using the exact interface velocity

and the third order accuracy obtained when using the computed interface velocity.
4.4. Time discretization

In the example of Section 4.3, the interface velocity is constant in time ([Txx]|C = 1). Therefore, this exam-

ple focused on the spatial discretization and the computation of the velocity, but ignored the details in the

time discretization. In fact, consider the Frank sphere solution in one spatial dimension: Let X = [�1,1]

with Dirichlet boundary conditions at the domain boundaries. The Frank sphere solution in one spatial

dimension describes a slab of radius RðtÞ ¼ S0

ffiffi
t

p
parameterized by S0. The exact solution takes the form
10
1

10
2

10
3

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

Fig. 13. Error analysis in the L1-norm for the one-dimensional Stefan problem on a log–log scale. The ghost cells are defined by cubic

extrapolation and we use the Crank–Nicholson scheme with Dt � Dx2. The stars depict the errors when the exact velocity is given and

the triangles illustrate the errors when the velocity is computed. The solid lines are the least square fits with slopes �4.03 and �3.10.

Fig. 14

The gh

numer

596 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
T ¼
0; s 6 S0;

T1 1� F ðsÞ
F ðS0Þ

� �
; s > S0;

(

where s ¼ jxj=
ffiffi
t

p
. T1 and S0 are related by the jump condition V n ¼ �D½rT �jC �~n. In one spatial dimension

F(s) = erfc(s/2), with erfcðzÞ ¼ 2
R1
z e�t2 dt=

ffiffiffi
p

p
.

We choose the initial time to be tinitial = 1 and T1 = �.5. This defines the initial radius to be S0 � .86. We
define / = |x| � S0 initially and compute the solution at time tfinal = 1.5. We employ the Crank–Nicholson

scheme in time. Since the velocity is third order (hence we are looking at a third order accurate overall solu-

tion), we take a time step restriction of Dt � Dx3/2 to obtain a third order accurate scheme in time as well.

However, the time discretization presented so far yields results that are only second order accurate for time

varying velocities, as demonstrated in Fig. 14.

This lower accuracy stems from the lack of consistency in the definition of Vn+1. For example approx-

imate the one-dimensional equation
d/
dt

¼ V ð/Þ;
with the Crank–Nicholson scheme. To evolve / from time tn to time tn+1, we perform the following three

steps:
10
1

10
2

10
3

10
4

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

. Error analysis in the L1-norm for the one-dimensional Frank sphere solution (the interface velocity is not constant in time).

ost cells are defined by cubic extrapolation and we use the Crank–Nicholson scheme with Dt � Dx3/2. The symbols represent the

ical solution on a log–log scale and the solid line is the least square fit with slope �2.18.

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 597
1. Use Vn(/n) to evolve /n to /nþ1
temp with an Euler step.

2. Use V nþ1ð/nþ1
tempÞ to evolve /nþ1

temp to /n+2 with an Euler step.

3. Define /n+1 = (/n + /n + 2)/2.

In the case of the Stefan problem, the velocity at time tn+1 is defined from the jump in the temperature
gradient at the interface at time tn+1 and thus needs to be consistent. That is, if Vn+1 = Vn+1(/n+1), then the

Vn+1 from step 2 above needs to be consistent with the /n+1 computed in step 3. To solve this problem we

iterate steps 2 and 3 in order to guarantee that the velocity at time tn+1 is consistent, i.e

Vn+1 = Vn+1(/n+1) = V((/n + /n+2)/2). We iterate until the magnitude of the error in this last equation is less

that 10�8. We note that very few iterations are needed. We use the Crank–Nicholson scheme with a time

step restriction of Dt � Dx3/2 and we perform the iteration described above. Fig. 15 demonstrates that such

a time discretization yields a third order accurate solution.

4.5. Example in two spatial dimensions

Consider the Stefan problem in a domain [�1,1] · [�1,1] with Dirichlet boundary conditions at the do-

main boundaries. The two spatial dimensions Frank sphere solution describes a disk of radius RðtÞ ¼ S0

ffiffi
t

p

parameterized by S0. The exact solution takes the form
10
1

10
2

10
3

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

Fig. 15. Error analysis in the L1-norm for the one-dimensional Frank sphere solution (i.e. the interface velocity is not constant in

time). The ghost cells are defined by cubic extrapolation and we use the Crank–Nicholson scheme with Dt � Dx3/2. The time

discretization involves iterating on the velocity as described in Section 4.4. The symbols represent the numerical solution on a log–log

scale and the solid line is the least square fit with slope �3.02.

Table

Accur

Numb

16 · 16

32 · 32

64 · 64

128 · 1

256 · 2

Table

Accur

Numb

16 · 16

32 · 32

64 · 64

128 · 1

256 · 2

598 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
T ¼
0; s 6 S0;

T1 1� F ðsÞ
F ðS0Þ

� �
; s > S0;

(

where s ¼ jxj=
ffiffi
t

p
, and with T1 and S0 related by the jump condition V n ¼ �D½rT �jC �~n. In two spatial

dimensions F(s) = E1(s
2/4), with E1ðzÞ ¼

R1
z e�t=t dt.

Choose the initial time to be tinitial = 1 and the initial radius to be S0 = .5 (/ = |x| � S0). This defines
T1 � �.15. Compute the solution at time tfinal = 2.89 with the ghost cells defined by cubic extrapolation.

The Frank sphere problem being ill-posed, we choose the final time large enough to allow the interface

to cross a large amount of grid cells (about 50), demonstrating the built-in regularization inherent to level

set methods. Table 2 presents the accuracy results.

For the sake of comparison, Table 3 offers the convergence results obtained with the symmetric discre-

tization from [9]. We note that the present method and 16 grid nodes yields the same accuracy as in [9] with

128 grid nodes. Likewise, [9] would require 1080 points to obtain the same accuracy as in the present

method and 32 points. This may have a significant impact especially in three spatial dimensions. In fact,
even when utilizing adaptive grid refinement, this newly proposed method can drastically lower the number

of grid nodes needed to represent thin dendrites while retaining the desired accuracy. Fig. 18 illustrates the

comparison between the method presented in [9] and the algorithm described in Section 4. Fig. 16 depicts

the interface evolution at several times and the cross-section of the temperature at initial (left) and final

(right) times is shown in Fig. 17.

4.6. Modified Stefan problem

The Gibbs–Thomson interface condition can be used to account for the deviation of the interface tem-

perature from equilibrium. Such boundary condition reads TI = ��cj � �v Vn, where j is the curvature of

the front, �c the surface tension coefficient, �v the molecular kinetic coefficient and Vn the interface velocity.
2

acy results for the algorithm described in Section 4

er of points L1-error Order L1-error Order

3.204 · 10�4 – 1.032 · 10�3 –

1.092 · 10�5 4.87 6.954 · 10�5 3.89

7.369 · 10�7 3.89 3.482 · 10�6 4.32

28 8.836 · 10�8 3.06 3.149 · 10�7 3.47

56 1.168 · 10�8 2.92 4.424 · 10�8 2.83

3

acy results for the algorithm described in [9]

er of points L1-error Order L1-error Order

8.047 · 10�4 – 2.709 · 10�3 –

4.384 · 10�4 0.876 1.528 · 10�3 0.826

1.874 · 10�4 1.23 9.724 · 10�4 0.652

28 9.606 · 10�5 0.964 5.500 · 10�4 0.822

56 4.723 · 10�5 1.02 2.822 · 10�4 0.963

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 16. Interface evolution in the case of the two-dimensional Frank sphere solution.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Fig. 17. Cross-section of the two-dimensional Frank sphere solution at tinitial = 1 (left) and tfinal = 2.89 (right).

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 599
Anisotropic surface tension effects can be included in the coefficient �c. For example one can take in two

spatial dimensions �c = (1 � 15�cos(4a)) where � is the anisotropy strength and a is the angle between

the normal at the interface and the x-axis.

In [9] the Gibbs–Thomson relation is computed at every grid point neighboring the interface and
then linearly interpolated to the front. In that case, the computation of the interface curvature is per-

formed with standard second order accurate central differencing. Such computations for the curvature,

which do not hinder the first order accuracy of the method presented in [9], cannot be used in this

present work without lowering the third order accuracy of our method. As a consequence, more re-

search on high order accurate curvature must first be performed before considering the more general

Gibbs–Thomson case. We note that ideas based on [31] could be used and we leave this research as

future work.

10
1

10
2

10
3

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Fig. 18. Error analysis in the L1-norm for the two-dimensional Frank sphere solution. The triangles illustrate the accuracy obtained

with the scheme presented in [9] and the circles represent the accuracy obtained with the algorithm presented in Section 4. The open

symbols are the errors in the maximum norm and the solid line is a least square fit with slope �.80 and �3.07, respectively.

600 F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601
5. Conclusions

We have proposed a simple finite difference algorithm for obtaining fourth order accurate solutions for

the Laplace equation on arbitrary domains. We also designed a fourth order scheme for the heat equation

with Dirichlet boundary conditions on an irregular domain. In the case of the heat equation, we utilize an

implicit time discretization to overcome the drastic time step restrictions associated with explicit schemes.

We then constructed a third order accurate method for the Stefan problem. We presented multidimensional

results to demonstrate the accuracy in the L1-norm. Notably, we remark that in two spatial dimensions,

one can obtain six digits of accuracy (for the Laplace and heat equations, five digits of accuracy for a Stefan
problem) on very coarse grids of 32 grid nodes in each spatial dimension. Therefore, even though the dis-

cretization yields a non-symmetric linear system, the ability of this algorithm to perform well on very coarse

grid makes it exceptionally efficient. Future work on this subject will include the use of adaptive mesh

refinement techniques and will focus on the modified Stefan problem where molecular kinetics and surface

tension are included.
References

[1] T. Aslam, A partial differrential equation approach to multidimensional extrapolation, J. Comput. Phys. 193 (2004) 349–355.

[2] S. Chen, B. Merriman, S. Osher, P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys. 135 (1997)

8–29.

F. Gibou, R. Fedkiw / Journal of Computational Physics 202 (2005) 577–601 601
[3] D. Chopp, Some improvement of the Fast Marching Method, SIAM J. Sci. Comput 23 (2001) 230–244.

[4] T. Chong, A variable mesh finite difference method for solving a class of parabolic differential equations in one space variable,

SIAM J. Numer. Anal 15 (1978) 835–857.

[5] A. Chorin, Curvature and solidification, J. Comput. Phys. 58 (1985) 472–490.

[6] R. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (The

Ghost Fluid Method), J. Comput. Phys. 152 (1999) 457–492.

[7] W. George, J. Warren, A parallel 3D dendritic growth simulator using the phase-field method, J. Comput. Phys. 177 (2002) 264–

283.

[8] F. Gibou, R. Fedkiw, R. Caflisch, S. Osher, A level set approach for the simulation of dendritic growth, J. Sci. Comput. 19 (2003)

183–199.

[9] F. Gibou, R. Fedkiw, L.-T. Cheng, M. Kang, A second order accurate symmetric discretization of the Poisson equation on

irregular domains, J. Comput. Phys. 176 (2002) 1–23.

[10] Y.-T. Kim, N. Goldenfeld, J. Dantzig, Computation of dendritic microstructures using a level set method, Phys. Rev. E 62 (2000)

2471–2474.

[11] J. Hoffman, Relationship between the truncation errors of centered finite-difference approximations on uniform and nonuniform

meshes, J. Comput. Phys. 46 (1982) 469–474.

[12] G.-S. Jiang, D. Peng, Weighted ENO schemes for Hamilton Jacobi equations, SIAM J. Sci. Comput. 21 (2000) 2126–2143.

[13] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228.

[14] H. Johansen, Cartesian grid embedded boundary finite difference methods for elliptic and parabolic differential equations on

irregular domains, Ph.D. Thesis, University of California, Berkeley, CA, 1997.

[15] H. Johansen, P. Colella, A Cartesian grid embedded boundary method for Poisson�s equation on irregular domains, J. Comput.

Phys. 147 (1998) 60–85.

[16] D. Juric, G. Tryggvason, A front tracking method for dendritic solidification, J. Comput. Phys. 123 (1996) 127–148.

[17] A. Karma, W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E 57

(1997) 4323–4349.

[18] H.-O. Kreiss, T. Manteuffel, B. Swartz, B. Wendroff, A. White, Supra-convergent schemes on irregular grids, Math. Comput. 47

(176) (1986) 537–554.

[19] J. Lambert, Numerical Methods for Ordinary Differential Systems, Wiley, New York, 1993.

[20] R. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources,

SIAM J. Numer. Anal. 31 (1994) 1019–1044.

[21] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 126 (1996) 200–212.

[22] T. Manteuffel, A. White, The numerical solution of second-order boundary value problems on nonuniform meshes, Math.

Comput. 47 (176) (1986) 511–535.

[23] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, 2002.

[24] C. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977) 220–252.

[25] M. Plapp, A. Karma, Multiscale finite-difference-diffusion-Monte-Carlo method for simulating dendritic solidification, J.

Comput. Phys. 165 (2000) 592–619.

[26] A. Schmidt, Computation of three dimensional dendrites with finite elements, J. Comput. Phys. 125 (1996) 293–312.

[27] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.

[28] J. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. USA 93 (1996) 1591–1595.

[29] J. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999.

[30] J. Sethian, J. Strain, Crystal growth and dendritic solidification, J. Comput. Phys. 98 (1992) 231–253.

[31] M. Sussman, M.Y. Hussaini, A discontinuous spectral element method for the level set equation, J. Sci. Comput. 19 (2003) 479–

500.

[32] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput.

Phys. 114 (1994) 146–159.

[33] J. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Autom. Contr. 40 (1995) 1528–1538.

[34] H. Udaykumar, R. Mittal, W. Shyy, Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids, J.

Comput. Phys. 153 (1999) 535–574.

[35] P. Zhao, J. Heinrich, Front tracking finite element method for dendritic solidification, J. Comput. Phys. 173 (2001) 765–796.

	A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem
	Introduction
	Laplace equation
	1D Laplace
	2D Laplace

	Heat equation
	1D Heat
	2D heat

	Stefan problem
	Discretization of the Stefan problem
	Why extrapolate in the normal direction?
	High order extrapolation

	Discretization of the velocity
	Finding the closest point
	A note on the re-initialization equation

	A simple example in one spatial dimension
	Time discretization
	Example in two spatial dimensions
	Modified Stefan problem

	Conclusions
	References

